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FORWARD 

This final report of the "System Technology Analysirr of 
Aeroafslsted Orbital Transfer Vehicles: Moderate Lift/Drag 
( 0 . 7 5 - 1 . 5 ) "  was prepared by the General Electric Company, Space 
Systems Division for the National Aeronautics and Space 
Administration's George C, Marshall Space Flight Center (MSPC) in 
accordance with Contract NAS8-35096. The General Electric 
Company, Space Systems Division was supported by the Grumnran 
Aerospace Corporation as a subcontractor during the conduct of 
this study. This study was conducted under the direction of the 
NASA Study Manager, Nr. Robert E. Austin, during the period from 
October 1982 through June 1985. 

The first phase of this program focused on a ground based 
AOTV and was completed in September 1983. The second phase was 
directed towards a space based AOTV and the cryofueled propulsion 
subsystem-configuration interactions and was completed in March 
of 1985. The second phase was jointly spoiiso.red by NASA-MSFC and 
the NASA Lewis Research Center (LeRC). Dr. Larry Cooper was the 
LeRC study manager. 

This final report is organized into the following three 
documents: 

Volume IA Executive Summary - Parts I & I f  
Volume IB Study Results - Parts I & I f  

Volume I1 Supporting Research and Technology 
Report 

Volume 111 Cost and Work Breakdown Structure/ 
Dictionary 

Part I of these volumes covers Phase 1 results, while 
Part I1 covers Phase 2 results. 
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EXECUTIVE SUMMARY - PART I 

1.0 INTRODUCTION 

Significant performance benefits can be realized via 
aerodynamic braking and/or aerodynamic maneuvering on return from 
higher altitude orbits to low earth orbit (LEO) (1-6). This 
approach substantially reducesthe mission propellant requirements 
by using aerodynamic drag to brake the vehicle to near circular 
velocity and aerodynamic lift to null out accumulated errors as 
well as change the orbital inclination to that required for 
rendezous with the Space Shuttle Orbiter or Space Station. 
Previous studies ( 3 , 4 ) ,  have considered only missions from LEO to 
Geosynchronous orbit (GEO) and return. In this study, missions 
were also defined to higher inclination orbits, where an 
aeromaneuvcring vehicle was expected to become more attractive 
due to it8 ability to provide aerodynamic orbital plane change. 

A study has been completed where broad concept 
evaluations were performed and the technology requirements and 
sensitivities for ground based aeroassisted OTV's over a range of 
vehicle hypersonic L/D from 0.75 to 1.5 were systematically 
identified and assessed. 

' 

Part I of this volume contains a narrative summary of the 
significant achievements and activities of Phase I (Ground based 
AOTVs) of this study "SYSTEM TECHNOLOGY ANALYSIS OF AEROASSISTED 
ORBITAL TRANSFER VEHICLES: MODERATE LIFT/DRAG". More detailed 
coverage of the study results are included in Volume IB, Volume 
11, and Volume 111 of this Phase I final report: Study Results, 
Supporting Research and Technology Report, Cost and Work 
Breakdown Structure Dictionary. 

and include four major areas: System Analyses, System/Subsystem 
Trades, Technology Payoff Assessment and Plan, and Cost Analysis. 

The major tasks of this study are outlined in Figure 1-1 
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Figure 1-1 Phase I Study Task f o r  System Technology 
Analysis of Mid L/D AOTV 
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2.0 SUMMARY STUDY FINDINGS, CONCLUSIONS AND - RECOMMENDATIONS 
The major first order findings and conclusions of this 

o Substantial performance improvements and hence cost 

study include the following: 

benefit can be obtained by developing enhancing tech- 
nologies such as 1) low thrust (2000 to 3000 lbs) 
advanced expander LOX-hydrogen engines with specific 
impulse of 480 to 490 sec or 2) reducing the external 
thermal protection system weight by reducing the 
coating weight and increasing the maximum allowable 
bond/structure temperature, or 3) reducing the 
structural shell weight by improving the quality of 
the design allowable data, or use of advanced 
structural materials. 

o Use of mid L/D AOTV provide8 significant aerodynamic 
plane change capability (20 for return from GEO with 
L/D = 1 . 5 )  and control authority over trajectory 
diopersions and off nominal atmospheres. 

delivery of a one ton payload is possible with the 65 
KSTS, mid L/D AOTV, an advanced cryofueled engine and 
lightweigh ASE (3000 lbs). 

o Delivery of very long payloads (45 ft) is possible by 
use of very short AOTV’s with drop tank. 

o Ground based AOTVs can reduce average Earth to GEO 
transport costs to $8000/lb for multiple satellite 
launches 

o A single STS flight manned mission to GEO with 

o Small vehicles which are used in two stage delivery 
, systems have very different technology cost benefits 

than larger single stage vehicles. 

Within any staging class of ground based vehicles,. 
performance sensitivites and technology cost benefits 
are independent of L/D within the mid L/D range ( . 7 5  
to 1.5). 

o 

o All mid L/D AOTV enabling technology i o  ready today. 

2.1 Overview of Major Results 
Examples of several configuration classes were evaluated. 

These included both single and multiple stage vehicles; unmanned 



delivery and manned vehicles. Examples of these configuration, 
which employ some growth technology are illustrated in Figures 
2.1-1, 2 and 3. It appears that the delivered payloads are 
maximum when the AOTVs are used in a 2 stage mode: perigee 
impulse is delivered by the AOTV and apogee impulse is delivered 
by the satellites own station keeping propulsion system (with 
enlarged tankage for the substantial apogee burn). By launching 
multiple satellites on the same AOTV flight, earth to GEO 
delivery costs can average around $8000/lb. 

2.1.1 General Mission Model 

The generalized mission model addressed is summarized in 
Figure 2.1-4. The initial ground based AOTV's will be deployed 
from a 150 nmi cirqlar orbit, launched from ETR at an orbital 
inclination of 28.5 . Theospace based AOTV's will be in a 220 
nmi circular orbit at 28.5 inclination. Launch vehicles 
considered include the standard STS, an improved STS, the aft 
cargo compartment (ACC) and the shuttle derived cargo vehicle. 

Operating scenarios were established for the several 
reference missions and A V  budgets determined for use in the 
performance computations, Figures 2.1-5, 6 and 7. 

stage mode (Figure 2.1-5A), an AOTV delivers the satellites to 
their final destination at GEO and then returns to LEO. Three 
major propellant burns are required. In a two stage mode 
("perigee kick", Figure 2.1-5B, the AOTV gelivers the satellites 
to an elliptical GEO transfer orbit at 28 inclination. The 
satellites' own on-board propulsion systems (the GEO station 
keeping systems, with enlarged propellant tankage) perform the 
GEO insertion burn (event 4, Figure 2.1-58) while the AOTV coasts 
toward return to LEO. Only two small propellant consuming burns 
(events 6 and 8) are required of the AOTV after payload 
separation. Effective use of aeromaneuvering orbital plane 
change during return from Molniya, Figure 2.1-7, is not possible 
due to the large AV required for apsis rotation when leaving the 
Molniya orbit in order to place the in-atmosphere flight segment 
near the nodal crossing. Instead it is recommended that the mid 
L/D AOTV be flown in the braking mode only with aeromaneuvering 
used for altitude control thus offering a substantial propellant 
reduction when compared with an all propulsive reusable OTV. 

Initial payload capability has been evaluated for a 
baseline of delivery to GEO, six hour polar, and Molniya (12 
hours x 63.4 orbits with return and recovery of the AOTV at LEO. 
Evolutionary payload requirements that have been assessed include 
a GEO servicing mission (6K up and 2K return) and a manned GEO 
mission (14K roundtrip). In addition, the capability to return 
from 5X GEO was evaluated. 

GEO delivery was examined in two modes. In a single 

At the current time there are no plans to retrieve or 



Figure 2.1-1 An Internal Tanked AOTV GEO Delivery Vehicle 

Figure 2.1-2 Manned AOTV "Hl" Launch Configuration 
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Figure 2.1-3 Perigee Kick AOTV-OH-3 
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Figure 2.1-4 AOTV General Mission Model Def in i t ion  
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Figure 2.1-5 Operating Scenario f o r  AOTV-GEO Missions 
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Figure 2.1-5 Operating Scenario for AOTV-GEO Missions 
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Figure 2.1-6 Operating Scenario for Polar Missions 

EVENTS 

1. TRANSFER BURN 
AV1- 5ooo FTlLEC 

2. MIDCOURSE CORRECTION 
AV2 

3. MANE CHANOE AND 
CIRCULARIZATION AT 6 HR POLAR 
AV3' 7000 

4. TIIlwIcERTO hp-1SON.W 
AV 9WOFORLID-1 .6  
A1 16O 

6. TRANSFER hp = 60 N. MI 

6. AOTV ENTERS ATMOsPnERE 

7. LEO CIRCULARIZATION 
AN0 MASING BURNS 
AV7 9 460 

bv6 9 110 

Figure 2.1-7 Operating Scenario f o r  Molniya Missions 
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carry payloads on the return leg of the mission. However, by use 
of a plane changing propulsive burn at initiation of the return 
leg and another propulsive burn at LEO for circularization (no 
aeroassist), payloads could be returned without being enclosed in 
a TPS covered shroud. 

Present expectations are for a manned space station to 
be operational several years before the first new reuseable OTV 
becomes operational. With a significant manned presence in 
space, manned OTV missions may be desired immediately, or shortly 
after, a new reuseable OTV becomes operational. Consequently, 
the initial AOTV may be a manned (or man related) vehicle. 

2.1.2 Aeromechanic Performance 

Previous studies ( 3 , 4 )  have considered only missions from 
LEO to GEO and return. In this study, missions were defined to 
higher inclination orbits, where an aero- maneuvering vehicle was 
expected to become more attractive due to its ability to provide 
orbital plane change without consuming much propellant. 

Performance studies have been conducted for return of mid 
L/D vehicles from GEO, 5 x GEO, and 6-hour polar circular orbits. 
Steering laws have been employed that include constant 
deceleration cruise at the overshoot and undershoot bounds, and 
constant bank angle cruise. Aerodynamic orbital plane change 
obtained is summarized in Figure 2.1-8, where it is shown that 
plane change capability increases with hypersonic L/D and entry 
velocity (8aximum f o r  the 5 x GEO return) for a specific steering 
law. A 90 bank angle provides the maximum plane change. 

minimum altitudes and thus different maximum heating rates, 
Figures 2.1-9, 2.1-10 and 2.1-11. It can be noted that maximum 
heat transfer rate increases with vehicle ballistic coefficient, 
W/CDA, with increasing entry velocity ( 5  x GEO results in maximum 
entry velocihy) and with decreasing minimum flight altitudes 
(constant 90 bank angle results in minimum flight altitudes). 

Use of the various steering laws results in gifferent 

2.1.3 Payload Delivery Sensitivites 

Flight performance and payload delivery sensitivities 
across the mid L/D range for a single stage AOTV are summarized 
in Figure 2.1-’12. The incremental increase in payload delivery 
capability, given a reduction in vehicle dry weight, AWP/L/ 

A W T  , or an increase in engine specific impulse, AW P/L/ 
AIsfiyYor an incremental increase in vehicle L/D, g W  P/L/ a L / D ,  

is illustrated f o r  vehicles at both ends of the mid L/D range. 
The incremental loss of payload delivery capability is 
illustrated for each degree of plane change generated 
propulsively in the initial mission orbit. Note the large 

10 



Figure 2.1-8 E f f e c t  o f  Mission, Steering 
Law, and L i f t  t o  Drag Ratio 
on Aerodynamic O r b i t a l  
Plane Change 
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Figure 2.1-12 Summary o f  Payload Delivery S e n s i t i v i t i e s  f o r  
An Internal Tanked AOTV-65K STS 
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Figure  2.1-13 Technology Advancement Potential 
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Figure 2.1-154 Effect o f  Technology Advances on Customer Cost Benef i t  
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differences in the effect of incremental L/D on payload delivery' 
capability, AW P/L/ a L / D ,  between the GEO and 6 hr polar 
delivery missions. 

2.1.4 Technology Payoffs 

A detailed review of the current state-of-the-art in the 
various technology and subsystems areas was conducted to serve as 
a baseline point of departure for this study. Technology 
advancement possibilities identified in numerous recent studies 
of OTV, AOTV, SDV, and STS were reviewed. These results are 
compared with our in-house data base and parameters selected that 
represent improvements due to nominal expected growth resulting 
from normal funding of these technology areas. A number of these 
improvements resulting in from 10 to 70% reduction of subsystem 
weight are summarized in Figure 2.1-13. Other improvements 
include increase of maximum operating temperature of the thermal 
protection system elements, and others that will be identified in 
the discussion on subsystem trades. 

Various techniques exist for ranking the technology 
benefits. The method selected for this study is as follows: 
given a subsystem weight reduction or other performance 
improvement possibility, the effect on increased payload weight 
was determined and this payload gain was converted to a customer 
cost benefit (i.e., money saved by the paying customer on Shuttle 
launch charges) assuming a nominal delivery cost to GEO of $8000 
per lb. The mid L/D AOTV payload delivery sensitivities of 
Figure 2.1-12 have been combined with delivery cost and subsystem 
weight reduction possibilities to generate the results summarized 
in Figures 2.1-14 for the 38 ft and OH-3 delivery vehicles. Note 
that the 38 ft single stage vehicle has very different technology 
payoffs from the small OH-3 staged vehicle. However, both 
vehicles benefit substantially from high I engines (-480 sec). 

Additional technology advance benefits are.summarized in 
Figure 2.1-15 for both vehicles. Aerodynamic uncertainties due 
to viscous and rarefaction effects will exist and could produce 
as much as +0.1 change in L/D. This uncertainty requires a 
propellant contingency which in turn decreases the payload 
delivery capability. Flight vehicles have typically flown 
initially with a safety margin in the thermal protection syste of 
as much as 25%. This translates into a very large payload loss 
(cost benefit loss) for the 38 ft delivery vehicle. A much 
smaller effect (almost negligible) is produced on the OH-3 
vehicle due to its much smaller size. In the GN&C subsystem 
area, the ability to obtain aerodynamic plane change is 
translated into payload gain (from reduced propellants) and hence 
customer cost benefit. The value of an "optimum" guidance system 
that has been selected because it is capable of obtaining the 
most aerodynamic plane change from a given vehicle configuration 
is illustrated for one degree of incremental plane change. The. 
value of an "adaptive" guidance system that has the capability of 
updating during the early portion of entry is illustrated for 

SP 
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each additional one degree of plane change that can be generated. 
The effect of encountering a 30% density shear (pocket) similar 
to that experienced by a recent STS flight has been demonstrated 
to have no effect on a vehicle with L/D - 1.5 but to have a small 
effect on a vehicle with L/D - 0.6. 0 

Some of the technology issues are more nebulous to 
quantify at this stage in the program but our best engineering 
judgment has been summarized in Figures 2.1-16 as to the 
relative importance of these issues. 

Another way of evaluating the benefits of technology 
advances is to compare the effects of advances on the payload 
delivery magnitude. These results are summarized in Figure 2.1-17 
where they have been ranked i n  order of decreasing importance for 
each of the vehicles. 

A Technology Plan is presented in Volume I f  where the 
current state-of-the-art is identified and objectives and 
technical approach are enumerated. 

2.1.5 

(one drop tank), and two stage AOTV designs have been explored. 
Two vehicle designs stand out as offering some real advantages. 
Figure 2.1-18 outlines a vehicle, nHIMtl, which is capable of 
bringing and returning a 2-man crew and their tools from low 
earth orbit (LEO) to geosynchronous orbit (GEO) during a 6 day 
mission. In addition, 2100 pounds of useful payload (like 
propellants, replacement components, etc.) are delivered and 
remain in GEO. The outstanding characteristic of this mission is 
that it is launched on a single shuttle flight (as a 65,000 pound 
payload). All prior studies have indicated the need f o r  multiple 
shuttle launches to deliver a crew of 2 and some payload to GEO. 
With Shuttle launch costs approaching a $100M per flight by the 
end a€  this decade: single launch scenarios offer very 
substantial cost advantages. 

operations, 
concial frustum has been rotated 180 to expose the interior of 
the vehicle to free space. This permits internal navigation and 
communication components to function without interference fro8 
the aeroshell. It also permits the crew capsule to rotate 90 
out of the main body of the AOTV, providing the crew with free 
access to a worksite. The forward end of the vehicle contains a 
hinged aerodynamic nose (shown in open position) and a large 
Liquid Hydrogen ( L H )  tank. By designing this tank external to 
the aero-shell, a substantial amount of structural and thermal 
protection system weight is saved. Prior to major velocity 
changes (engine burns), the crew capsule is rotated within the 
AOTV (SO the vertical centerline in Figure 2.1-18a is coincident 
with the vehicle centerline) and the aeroshell over the aft 

Attractive Ground -- Based AOTV Configuration Approaches 

Numerous single stage (internal tanked), stage and a half 

0 

Figure 2.1-18a shows AOTV " H l M "  configured for orbital 
Half of the aerodynamic,shell covering the aft 

15 



Figure 2.1- 16 Mid L/D AOTV Technology Issues 
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Figure 2.1 - 17 Summary o f  Payload Del i very Improvements Due t o  
Techno1 ogy Advances 
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frustum is closed. Before atmospheric entry, the LH tank is 
staged (an on-board rocket sends it on a burn-up trajectory), 
flaps are deployed and the nose is closed. "HlM" is now in the 
atmospheric entry configuration shown in Figure 2.1-18b. It is 
estimated that its real (non-Newtonian) [Lift/Drag]max ratio is 
1.2. To perform its mission, it must have an (L/D) max ofo1.04 
to aerodynamically effect an orbital plane, change of 14.6 . The 
additional L/D provides a margin of safety which enables more 
confidence that mission goals can be met. The deployed flap 
shown at the aft end is schematic only. Although a split flap 
system is baselined for handling roll assymmetry, internal moving 
mass systems are also candidates. Host vehicle configurations 
have been established to maintain the center of pressure at the 
nominal vehicle center of mass (CM) without the use of a flap. 
Use of a flap for axial CM trimming may be required in some 
cases. 

The 1 1 ~ 1 ~ 1 1  mission is enabled by two advanced technologies. 
Aerodynamic braking on return to LEO saves the propellant 
necessary to decelerate the AOTV by about 8000 ft/sec. This 
manned mission to GEO would be impossible (on one Shuttle launch) 
i f  that propellant had t8 be carried on the mission. The L/D of 
1.04, which permits 14.6 of aerodynamic change of orbital 
plane, allows 8 2100 pound payload to be delivered. If all plane 
changing (28.5 ) had to be performed propulsively, the additional 
fuel would have eliminated the entire 2100 pound payload. 
Similarly, advanced propulsion technology also enables this 
mission. The specific impulse of current RLlO engines is 447 
seconds. To deliver 2100 pounds of payload to GEO on the "HlM" 
mission, 479 seconds of Isp is required in addition to the L/D - 
1.04. To perform the "HIM" mission with no payload to CEO, 459 
seconds of specific impulse is required. More than high 
performance is necessary for "HlM" engines. For a given thrust 
level and nozzle expansion ratio, a large number of small engines 
provides a significantly smaller AOTV than would a single large 
engine. The smaller AOTV weighs less and has a better chance of 
fitting within a single 60-foot long orbiter cargo bay. Also, 
multiple engines can provide a level of redundancy that is highly 
desirable (fail safe) for manned missions. 

Another valuable use of advanced technology is shown in 
Figure 2.1-19. A small, re-useable AOTV whose primgry mission is 
to deliver payloads to a GEO transfer orbit near 28 inclination 
is shown in Figure 2.1-19a. Since the "OH-3" primary mission 
keeps it near its orbital inclination at launch, it doesn't need 
high L/D for plane changing maneuvers. The configuration shown 
has an L/D in the neighborhood of 0.4, enough to vary "OH-3"'s 
altitude and assure atmospheric capture on one pass despite large 
variations in expected density. The AOTV contains a small amount 
of internal propellant to perform a final circularization phasing 
burn (to rendezvous with the Orbiter) after exiting the 
atmosphere in a lofted trajectory. The propellant necessary to 
perform a satellite delivery is stored externally, in throw-away 
drop tanks. This staging arrangement allows 110H-31' (with a dry 



Figure 2 .1  - 18 Small Manned AOTV I 'H-lM" Figure 2.1-19 AOTV "OH-3" 
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weight of 4000 pounds) to weigh one half of the lightest AOTV 
designs published by this date. It is an extremely cost 
effective perigee kick stage. Earth to GEO transport costs 
average around $8000/lb using a 6 5 ~  STS and OH-3. 

of "OH-3" can be used to advantage. The tankage shown, in 
combination with four 3000 pound thrust, 476 second specific 
impulse engines, is adequate to deliver an 11,000 pound 
spacecraft (with its own propellant and propulsion system) to a 
GEO transfer orbit. The figure shows a single long payload. 
However, a single short (<14 feet) payload can be supported and 
one-half of the payload bay would remain empty. Since the entire 
launch stack weighs about 30,000 pounds (including A S E ) ,  one half 
of the cargo carrying capacity of a 65,000 pound lifting Shuttle 
can be used by another paying customer. Since Shuttle payload 
charges are based upon using 75% of capacity (for full launch 
cost), payload cost will be approximately $2M per foot of length. 
Consequently, a flight schedule of 10 per year promises a savings 
of $2OM/year per foot of length saved in the next generation U.S. 
upper stage vehicle. I'OH-3", or a variation on its theme, 
appears to be an excellent contender for this role. 

The Figure 2.1-19b shows one way in which the short length 

2.1.6 Payload Delivery Costs 

A Work Breakdown Structure (WBS) and related project costs 
have been developed for selected AOTV options. Phases covered 
include DDT&E, production, and operations. Program cost 
estimates include only those incurred by the prime contractor. 
Some of the major user launch cost considerations are enumerated 
on Figure 2.1-20. Operation costs and earth to LEO transport 
charges have been converted into payload delivery costs for GEO 
delivery. A summary of these cost results is presented in Figure 
2.1-21 for the various AOTV's examined and in Figure 2.1-22 for 
the OH-3 type vehicle. The discontinuity in the curve denotes 
the transition from one set of drop tanks to two sets of drop 
tanks. Maximum cost efficiency occurs when the payload bay is 
loaded to capacity (60 ft and 65,000 lb). This condition 
produces a "cost to GEO" of about $6000/lb (off the curve for the 
OH-3 tank system that was outlined during Phase I). However, a 
fully loaded STS cargo bay is not considered to be typical of STS 
operations with cryo OTVs. A prior manufacturing study 
had indicated that 83% utilization of the cargo bay is 
representative. Applying this factor to a maximum GEO delivered 
weight of 16,000 lb produces a typical OH-3 GEO delivered weight 
of 13,300 lb (with two sets of drop tanks and two or three 
satellites) and a typical "cost to GEO" data of Figure 44 does 
not contain amortization of development and first unit costs for 
OH-3. IF DDT&E and the cost of one vehicle are amortized over 
43 flights, the average cost of delivery to.GE0 increases by 
$1000/lb (at 13,300 lb). Consequently, we have used $8000/lb as 
a representative cost to deliver payloads to GEO using OH-3. 
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FIGURE 2.1-20 SOME USER LAUNCH COST CONSIDERATIONS 
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FIGURE 2.1-21 BI-CONIC AOTV COST SUMMARY 
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Figure 2 .1 -22  User Costs vs .  Payload Weight: Ground Based OH-3 

0 LAUNCH COSTS BASE0 O N  WEIGHT 
cos1 TO GEO 

W 
( U L W  

l!,.OW 

14.000 

13.000 

12.000 

1 1 .ow 

l o . m  

9.m 

c 

- NASA STS PRICING FORMULA 

2 DROP TANKS L 3 PAYLOADS 

FIXED LAUNCH 

1ooo 4000 6Ooo w)o 1o.OOo 12.000 11.OOo 
.,... .. .. . .. 

7- W It'd 1 \ 1 1  I 'AV I  OAI )  A 1  GI 0 11111 

22 



. 

2.2 Summary 

by developing enhancing technologies euch as: 
Substantial AOTV performance improvements can be obtained 

0 Low thrust (2000 to 3000 lbs) advanced expander LOX- 
hydrogen engines with specific impulse of 480 to 490 
sec, 

0 Reducing the external thermal protection system weight 
by reducing the coating weight and incresing the 
maximum allowable bond/structure temperature, 

0 Reducing the structural shell weight by improving the 
quality of the design allowable data, or use of 
advanced structural materials, 

0 Reducing the avionics subsystem weight by employing 
laser gyros, a data bus, advanced spacecraft flight 
computers, and perhaps decreasing the level of 
redundancy and autonomy. 

It was determined that small vehicles, as used in two 
stage (perigee kick) delivery, have very different cost benefits 
than larger single stage vehicles and that within any staging 
class of ground based vehicles,performance sensitivitiee and 
technology cost benefits are independent of L/D. 

included : 
Numerous system payoffs were a160 identified that 

0 Use of mid L/D AOTV provide8 significant aerodynamic 
plane change capability (20 for return from GEO with 
L/D - 1.5) and control authority over trajectory 
dispersions and off-nominal atmospheres. 

delivery of a one ton payload is possible with the 65 
KSTS, mid L/D AOTV, an advanced cryofueled engine and 
lightweight ASE (3000 lbs). 

0 Delivery of very long payloads ( 4 5  ft) is possible by 
use of very fhort AOTV's with drop tank. 

0 Ground based AOTVs can reduce average Earth to GEO 
transport costs to $8000/lb for multiple satellite 
launches. 

8 A Sffig19 STS f l i g h t  mafifiec! r i 6 6 f t f i  t o  G$c With 

Recommendations for Future Study 

Based on results of this study, and the increasing 
- 2.3 

interest in a space station, it is recommended that the two major 
areas of 1) propulsion subsystem-AOTV configuration interaction 
issues and 2) technology benefits and payoffs of a space based 
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AOTV be further pursued at this time. 
cptier'.t n f f e r  alternative technical approaches to performing the 
attractive manned GEO mission (on one 6 5 K  STS launch) which is 
outlined in this study. These propulsion issues are outlined in 
Table 2.3-1. 
identifitd in Paragraph 2.1.4 and a plan for their pursuit 
included in Volume 11. 

The propulsion subsystem 

Numerous other high payoff technologies have been 

TABLE 2.3-1 Enqine Recommendations and Options 
for Man Rated Bi-conic AOTV 

0 At this time, six fixed, low thrust (-2000 to 3000 lb), 
advanced expander, LOX-hydrogen engines are strongly 
preferred 

- New engine ROM development costs are "N $ 3 0 0 M  

- Is performance gain (man to GEO on one 6 5 K  STS flight) 
worth the expense? 

0 Some alternatives to new LOX-hydrogen engine development that 
seem worthy of future study: 

- Three RL 1OA-3-3A engines on H-1M type vehicle 
incorporate "improved technology" subsystem weights 

0 Explore effects of enhanced STS cargo capacity 
(65K, 75K, 1 O O K )  on this vehicle 

- Alternative LOX-hydrocarbon fuels (MMH, propane, methane, 
kerosene) 

0 Explore AOTV system implications 
0 Include effects of variable STS launch capacity 

- Storable propulsion (MMH, ~ 2 H 4 )  AOTV in conjunction with 
heavy lift launch capability ( l O O K  STS or SDV) 
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